Welcome Colleagues!

TODAY'S PRESENTATION:

Key Differences among B6 Substrains and the Research Impact

START TIME:

10:00 AM SGT (Singapore)

There will be silence until the webinar begins at the start time.

Organized by: INVivos BRINGING LIFE TO YOUR RESEARCH

JAX[™] WEBINARS

Presented by: Sarah Edie, PhD Technical Information Scientist The Jackson Laboratory

January 29, 2021

Key Differences among B6 Substrains and the Research Impact

Development of inbred strains

Resources to find and understand key differences between strains

Accurate reporting of data

Sarah Edie, Ph.D. Technical Information Scientist

JAX MISSION

To discover precise genomic solutions for disease and empower the global biomedical community in the shared quest to improve human health.

. .

EMPOWERING SCIENTIFIC EXCELLENCE

Our scientific expertise is derived directly from JAX faculty and scientific researchers, who are embarking on ground-breaking research in addition to providing cutting-edge models and powerful preclinical services to researchers worldwide.

Explore the Latest Innovations

Discovery Innovation

Education

GLOBAL EXPERIENCE. GLOBAL INFLUENCE.

JAX is a global organization hosting events and shipping mouse models to researchers worldwide, who have come to rely on the gold-standard models to answer their unique research questions.

> *white dots indicate JAX locations and shaded areas of the map are countries JAX has shipped products and services to.

The Story of B6 **Substrains**

Chapter One

Understanding how substrains arise

Chapter Two

Selecting the appropriate strain for your research

Chapter Three

Accurate reporting through nomenclature

Chapter Four

Reproducibility: Choosing appropriate controls

7

The Story of B6 Substrains

Chapter One

Understanding how substrains arise

Chapter Two

Selecting the appropriate strain for your research

Chapter Three

Accurate reporting through nomenclature

Chapter Four

Reproducibility: Choosing appropriate controls

Where did the first inbred strains come from?

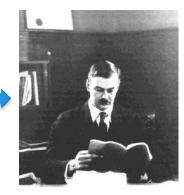
Abbie Lathrop – mouse fancier 1900-1918 Granby, MA Mice are ideal for mammalian genetics

Small and easy to maintain

Great reproductive performance

Anatomy and physiology similar to humans

Dr. William Castle begins using mice 1902 Bussey Institute, Harvard


Where did the first inbred strains come from?

Abbie Lathrop – mouse fancier 1900-1918 Granby, MA

Dr. William Castle begins using mice 1902 Bussey Institute, Harvard

C.C. Little Student of Dr. Castle 1909 - begins inbreeding mice

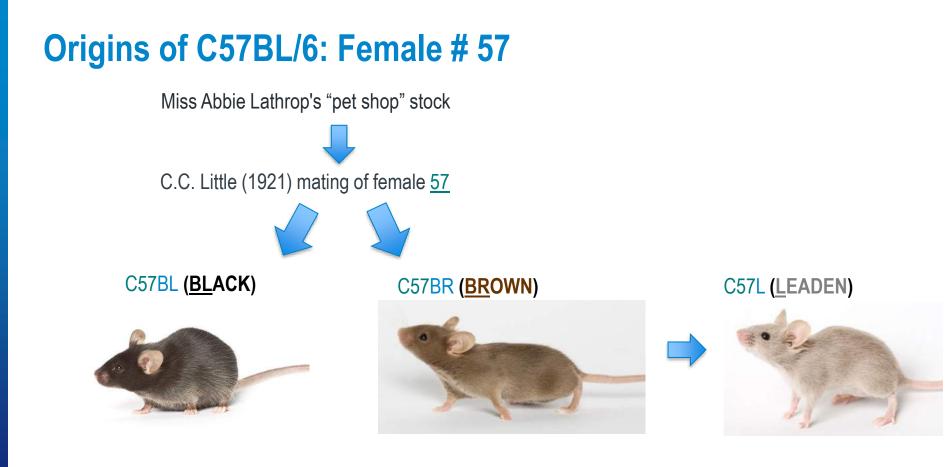
Inbred Mouse Strains

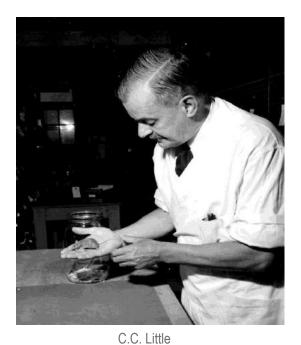
Maintained by sibling (sister x brother) mating for 20 or more consecutive generations (F20+)

Most genetically uniform mouse resource

Best characterized strains

Unique phenotypes


Widely used as models of human disease



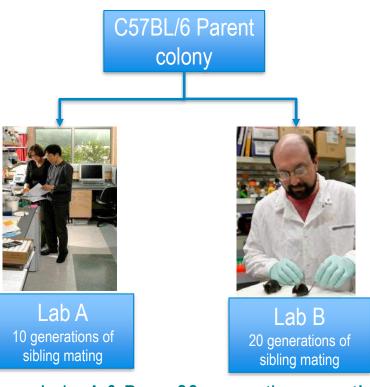
Many Substrains of C57BL/6 Exist

Founded The Jackson Laboratory in 1929

Effect of Genetic Drift on Substrain Development

- Genetic changes resulting from mistakes in meiosis or DNA repair
- A new mutation becomes fixed every 6-9 generations
- Associated webinar:
 - Genetic Drift: What It Is and How to Minimize Its Impact on Your Research
 - Link to watch webinar

Species Diversity



When is a substrain, a substrain?

Colonies separated by 20 or more generations

OR

Phenotypic or genetic differences are discovered

Labs A & B are 30 generations apart!

Genetic Differences between B6J and B6NJ

- Used the data from the 17 Mouse Genomes Project
- 236 validated sequence variants
- 43 Structural Variants (deletions and duplications)
 - 15 overlapping a gene

Table S1. SNP and small indel validation numbers

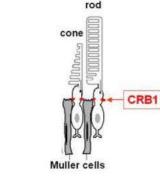
	No. of filtered variants	No. variants sent for validation*	Failed validation process**	Loci not variant	No. validated***
Coding SNPs	40	40	6	0	34
Non coding SNPs	8484	722	272	304	146
Coding indels	11	11	3	6	2
Non Coding indels	2142	158	82	22	54

Simon, M. M., et al. (2013). Genome Biology 14(7): R82. PMID: 23902802

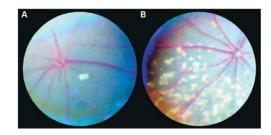
16

Genetic Differences Translate to Phenotypic Differences

Genetic or genomic change	Effect	Strain
Dock2 Copy Number Variation	Immune cell changes	C57BL/6NHsd
Crb1 ^{rd8}	Progressive, spotty retinal degeneration	C57BL/6N
Snca deletion	Alpha-synuclein expression	C57BL/6OlaHsd
Nnt	Metabolic	C57BL/6J
Cdh23 ^{ahl}	Age related hearing loss	All C57BL/6 substrains


Retinal Degeneration in C57BL/6N Substrains

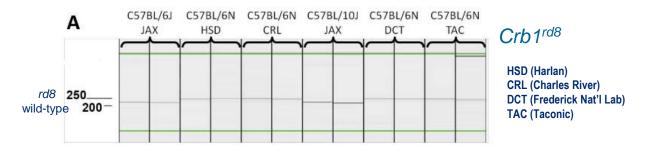
Crb1 (crumbs-like 1)


- Localized to Muller cells and photoreceptor (PC) inner segments
- Mutations in CRB1 associated with retinal diseases in humans
 - Retinitis pigmentosa
 - Leber congenital amaurosis

Crb1^{rd8}

- Single base deletion
- Shorter photoreceptor inner & outer segments early as two weeks
- Progressive, spotty retinal degeneration

http://crfb.univ-mrs.fr/Crumbs/section/en/CRB1_function/105


Mehallow AK et al. 2003. Hum Mol Gen 12(17):2179-2189. PMID: 12915475

Retinal Degeneration in C57BL/6N Substrains

C57BL/6J: *Crb1* wild-type **C57BL/6N:** *Crb1*^{rd8}/*Crb1*^{rd8}

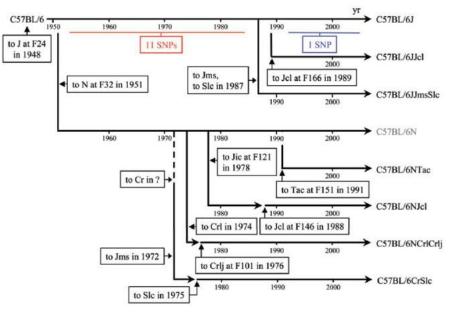
Consensus	ACTGTGAAGACAGCTACAGTTCTTA	C	GTGTGCCTGTCTCTCGGGATGGTCAGGG
4 Sequence	0 160 170		180 190 200
C57BL/6N - For	ACTGTGAAGACAGCTACAGTTCTTA	-(GTGTGCCTGTCTCTCGGGATGGTCAGGG
C57BL/6N – Rev	ACTGTGAAGACAGCTACAGTTCTTA	-(GTGTGCCTGTCTCTCGGGATGGTCAGGG
C57BL/6J – For	ACTGTGAAGACAGCTACAGTTCTTA	C	GTGTGCCTGTCTCTCGGGATGGTCAGGG
C57BL/6J – Rev	ACTGTGAAGACAGCTACAGTTCTTA	C	GTGTGCCTGTCTCTCGGGATGGTCAGGG

Mattapallil, MJ et al. 2012. Invest Ophthalmol Vis Sci PMID 22447858

Phenotypic differences between B6J and B6NJ

	HM	IGU	IC	s	MRC F	larwell	WT	SI
Description	М	F	М	F	M	F	М	F
Non-Invasive blood pressure: Systolic arterial pressure								
Non-Invasive blood pressure: Pulse rate								
Calorimetry: Oxygen consumption								
Calorimetry: Carbon dioxide production								
Calorimetry: Heat production (metabolic rate)								
Simplified IPGTT: Blood glucose concentration								
Simplified IPGTT: Glucose response AUC								
DEXA: Fat mass								
Modified SHIRPA: Locomotor activity								
Modified SHIRPA: Startle response								
Grip-strength: Forelimb grip strength measurement								
Grip-strength: Forelimb grip strength measurement mean								
Rotarod: Latency to fall								
Rotarod: Passive rotation								
Rotarod: Latency to fall mean								
Acoustic Startle & PPI:110dB startle magnitude								
Acoustic Startle & PPI:PP1 + pulse startle magnitude								
Acoustic Startle & PPI:PP2 + pulse startle magnitude								
Acoustic Startle & PPI:PP3 + pulse startle magnitude								
Acoustic Startle & PPI:PP4 + pulse startle magnitude								
Acoustic Startle & PPI: Prepulse inhibition - PP2								
Acoustic Startle & PPI:Prepulse inhibition - PP3								
Acoustic Startle & PPI: Global prepulse inhibition								
Clinical Chemistry: Glucose								
Clinical Chemistry: Urea								
Clinical Chemistry: Sodium								
Clinical Chemistry: Potassium								
Clinical Chemistry: Chloride								

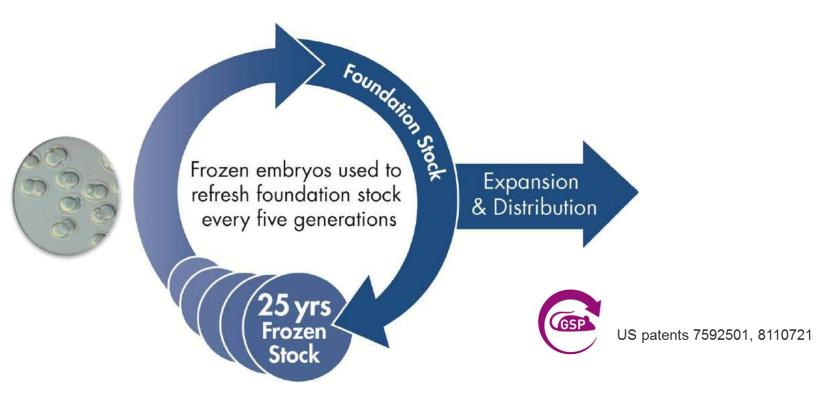
Key 0.01 0.001 1.0E-4 1.0E-5 N>J Image: State of the sta


Simon, M. M., et al. (2013). Genome Biology 14(7): R82. PMID: 23902802

IMPReSS:

International Mouse Phenotyping Resource of Standardised Screens

Substrains Continue to Develop Over Time


Genotyped C57BL/6 substrains using ~1500 SNPs

Additional 12 SNPs identified that are different between C57BL/6 "J" strains and C57BL/6 "N" strains

Mekada et al. Exp. Anim.: 58(2), 2009 PMID: 19448337

The Jackson Laboratory's Genetic Stability Program (GSP)

JAX Genetic Stability Program

e Jackson

boratory

The Story of B6 Substrains

Chapter One

Understanding how substrains arise

Chapter Two

Selecting the appropriate strain for your research

Chapter Three


Accurate reporting through nomenclature

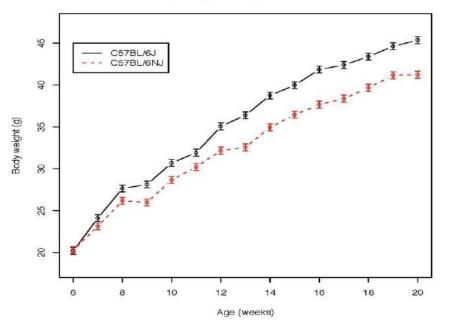
Chapter Four

Reproducibility: Choosing appropriate controls

Crb1^{rd8}
 Cyfip2^{M1N}
 Nlrp12^{C57BL/6N}
 Cox7a2l^s

- C57BL/6J POPULAR Stock No: 000664 | B6 Genetics
 - Ahrb-1
 - 🖯 Cdh23^{ahl}
 - P2rx7^{rs48804829-T}
 - Gluchos1^{C57BL/6J}
 - Gluchos2^{C57BL/6J}
 - Gluchos3^{C57BL/6J}

• Nnt^{C57BL/6J}


■ Nnt^{C57BL/6J}

Allele Symbol: <i>Nnt^{C57BL/6J}</i>	MGI /
Allele Name	C57BL/6J
Allele Type	Spontaneous (Null/Knockout)
Allele Synonym(s)	Ant1 ⁻
Gene Symbol and Name	Nnt MGIZ , nicotinamide nucleotide transhydrogenase
Gene Synonym(s)	
Strain of Origin	C57BL/6J
Chromosome	13
Molecular Note	This allele contains a stretch of 17,814 bp missing between exons 6 and 12. RT-PCR demonstrated cDNA corresponding to exons 7-11 was absent. Mature protein was not detected in these mutants.

Metabolic Differences between B6J and B6N

C57BL/6J (000664) vs C57BL/6NJ (005304)

Body weight change with 60% fat

- Mice fed a 60 kcal% high fat diet
- B6J gains more weight than B6NJ on high fat diet (HFD)

Nicholson, A et al. 2010. Obesity 18(10): 1902-1905. PMID: 20057372

Metabolic Differences between B6J and B6N

Glucose Tolerance Test

- Measures ability of mice to clear glucose from blood
- Both B6J and B6NJ mice have severely impaired glucose tolerance
- B6J more impaired than B6NJ on high fat diet (HFD)

2 wks on HFD

Glucose tolerance test (diet= 60% fat; age = 8 wks)

8 002 200 600 600 ose (mg/dL) (mg/dt.) 500 500 Gluck 름 400 8 300 300 - C57BL/6J - C57BL/GJ - - C578L/6NJ - -C57BL/6NJ 200 200 30 60 90 120 30 60 90 120 Time Post Administration (minutes) Time Post Administration (minutes)

Nicholson, A et al. 2010. Obesity 18(10): 1902-1905. PMID: 20057372

14 wks on HFD

Glucose tolerance test (diet= 60% fat; age = 20 wks)

What resources can you use?

https://phenome.jax.org/

Mouse Phenome Database

https://phenome.jax.org/

JAX:001139
Rbrc
JAX:000664
Arc
Tac 764
(none)
JAX:000924
Rbrc
Rbrc
Hsd
Rbrc
Rbrc Hsd
Hsd
Hsd (none)
Hsd (none) Crl c57bl-6n-mouse
Hsd (none) Crl c57bl-6n-mouse Rbrc
Hsd (none) Crl c57bl-6n-mouse Rbrc Hsd
Hsd (none) Crl c57bl-6n-mouse Rbrc Hsd JAX:005304

Mouse Phenome Database

Mouse Phenome Database

https://phenome.jax.org/

Mouse strain: C57BL/6J

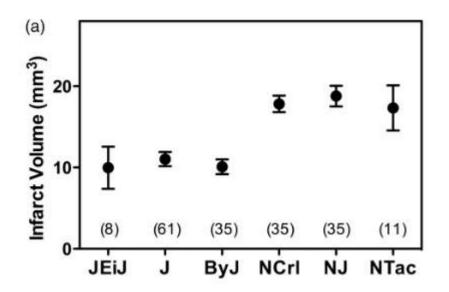
Vendor: JAX:000664 MGI

Find data in MPD for C57BL/6J
Search C57BL/6J data:

MPD ID: 7

- List all studies involving C57BL/6J (281)
- Find phenotypes where C57BL/6J is an outlier
- · Download all measured phenotypes for this strain (more into)

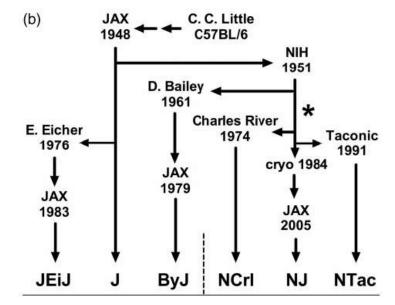
Retrieve SNPs for C57BL/6J


- Compare C57BL/6J vs. one other strain
- Strain type: Inbred
- · Vendor availability status: Readily Available

Literature Searches

Modeling Stroke vulnerability in C57BL/6 substrains

- o 3 "J" substrains:
 - smaller and fewer infarcts following stroke induction
 - Showed sex skewing females had smaller infarct sizes compared to males
- 3 "N" substrains
 - Larger infarct sizes
 - No sex skewing


Zhao, A, Mulligan MK, and Nowak T 2019. JCBFM 39(3): 426-438. PMID: 29260927

Literature Searches

Modeling Stroke vulnerability in C57BL/6 substrains

- o 3 "J" substrains:
 - smaller and fewer infarcts following stroke induction
 - Showed sex skewing females had smaller infarct sizes compared to males
- 3 "N" substrains
 - Larger infarct sizes
 - No sex skewing

Zhao, A, Mulligan MK, and Nowak T 2019. JCBFM 39(3): 426-438. PMID: 29260927

The Story of B6 **Substrains**

Chapter One

Chapter Two

Chapter Three

Accurate reporting through nomenclature

Chapter Four

Know Your Substrain: Use Proper Nomenclature

C57BL/6J

C57BL/6NJ

C57BL/6NCrl

Parent strain

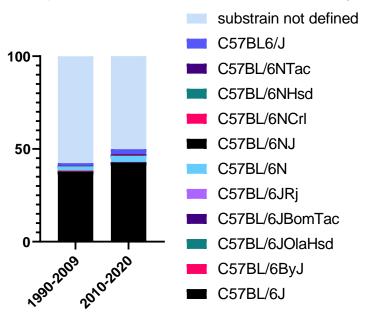
Substrain designation NIH (N) By (Dr. Bailey)

Laboratory maintaining the strain

Jackson (J) Crl (Charles River Laboratories)

Institute for Laboratory Animal Research (ILAR) Lab Codes

http://dels.nas.edu/global/ilar/Lab-Codes



C57BL/6 Publications

Pubmed Search Term	1990-2009	2010-2020
C57BL6	18655	25,546
C57BL/6J	7043	10,893
C57BL/6ByJ	88	21
C57BL/6JOlaHsd	26	43
C57BL/6JBomTac	2	11
C57BL/6JRj	1	28
C57BL/6N	426	834
C57BL/6NJ	0	24
C57BL/6NCrl	16	87
C57BL/6NHsd	18	28
C57BL/6NTac	20	92
C57BL6/J	267	671

Complete & correct nomenclature benefits everyone!

Based on September 2020 PubMed citations search (without limits)

Reproducibility through Accurate Reporting

ARRIVE

The ARRIVE guidelines Animal Research: Reporting *In Vivo* Experiments

Provide species-appropriate details of the animals used, including species, strain and substrain, sex, age or developmental stage, and, if relevant, weight.

8b

8a

Provide further relevant information on the provenance of animals, health/immune status, genetic modification status, genotype, and any previous procedures.

https://arriveguidelines.org/arrive-guidelines/experimental-animals

National Institutes of Health

RIGOR AND REPRODUCIBILITY

animals: report source, species, strain, sex, age, husbandry, inbred and strain characteristics of transgenic animals

https://www.nih.gov/research-training/rigor-reproducibility

Reproducibility through Accurate Reporting

ARRIVE

The ARRIVE guidelines Animal Research: Reporting *In Vivo* Experiments

https://arriveguidelines.org/arrive-guidelines/experimental-animals

RIGOR AND REPRODUCIBILITY

https://www.nih.gov/research-training/rigor-reproducibility

Cell Press STAR Methods

providing the available and detailed information related to the species, strain and backcrossing status, developmental stage, weight, genotype, health/immune status, drug or test naive, previous procedures, housing, and husbandry.

https://www.cell.com/star-authors-guide

The Story of B6 Substrains

Chapter One

Understanding how substrains arise

Chapter Two

Selecting the appropriate strain for your research

Chapter Three

Accurate reporting through nomenclature

Chapter Four

Reproducibility: Choosing appropriate controls

Considerations for Control Selection

Congenic Strains*

- Littermates (het x het, het x wt, or hemi x wt mating scheme)
 - Wild type or heterozygous for mutant gene or allele
 - Non-carriers of transgene
 - Can also use non-littermate controls from the colony
- Inbred (hom x hom mating)
 - Match background mutant is on (including substrain)

Mixed Background (B6J and B6N)

- Littermates
 - Wild type or heterozygous for mutant gene or allele
 - Non-carriers of transgene
 - Can also use non-littermate controls from the colony

* Congenic strains have been crossed more than 10 generations to inbred strain. Acceptable to use inbred as control after N5

What Resources Can You Use?

Review Strain Development

Also Known As:Sox2Cre

These Sox2Cre transgenic mice express Cre recombinase under the control of the mouse *Sox2* (SRY-box containing gene 2) promoter, and may be useful for generating epiblast-derived specific conditional mutations.

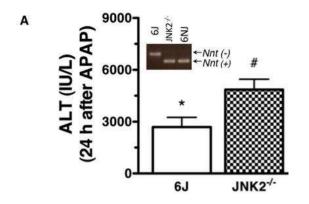
What Resources Can You Use?

Review Strain Development

Development

The Sox2Cre transgene was designed with 12.5 kb of upstream regulatory sequence from the mouse *Sox2* locus (SRY-box containing gene 2), a chicken β -actin intron, a Cre recombinase gene, and a rabbit β -globin poly(A) sequence. This transgene was introduced into B6CBAF1 donor eggs. The resulting founder animals were initially crossed to C57BL/6 mice, and then crossed to outbred Swiss Webster mice. The mice were then backcrossed to C57BL/6 for 11 generations (see SNP notes below), and then sent to The Jackson Laboratory Repository.

A 32 SNP (single nucleotide polymorphism) panel analysis, with 27 markers covering all 19 chromosomes and the X chromosome, as well as 5 markers that distinguish between the C57BL/6J and C57BL/6N substrains, was performed on the rederived living colony at The Jackson Laboratory Repository. While the 27 markers throughout the genome suggested a C57BL/6 genetic background, 1 of 5 markers that determine C57BL/6J from C57BL/6N were found to be segregating. These data suggest the mice sent to The Jackson Laboratory Repository were on a C57BL/6N genetic background.

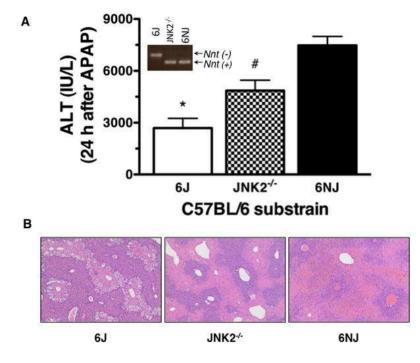

Background Strain Information Questions You May Want to Ask

- What strain was used to develop this stock?
 - What oocyte donor?
 - What ES cell line?
- What strains have been introduced through breeding?
 - \circ Cre/FLP
 - \circ Reporters
 - Other mutations
- What is the current breeding scheme?
- What is the current generation?
- Has it been cryopreserved?
 - O At what generation?
 - O Has the strain been backcrossed to an inbred strain?
- Has the genetic background been verified?

Select the Proper C57BL/6 Control Avoid Common Research Mistakes

Effects of Mapk9 (Jnk2) on acetaminophen-induced liver injury (AILI)

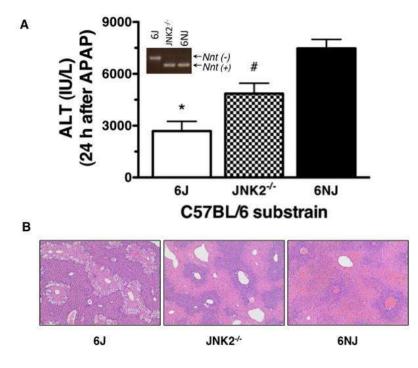
6J JNK2*


в

Bourdi M et al. 2011. Chem Res Toxicol 24: 794-6. PMID:21557537

Select the Proper C57BL/6 Control Avoid Common Research Mistakes

Effects of Mapk9 (Jnk2) on acetaminophen-induced liver injury (AILI)


Bourdi M et al. 2011. Chem Res Toxicol 24: 794-6. PMID:21557537

46

Select the Proper C57BL/6 Control Avoid Common Research Mistakes

Effects of Mapk9 (Jnk2) on acetaminophen-induced liver injury (AILI)

Bourdi M et al. 2011. Chem Res Toxicol 24: 794-6. PMID:21557537

Ensuring Data Validity & Reproducibility

Consider your rodent, your most important reagent

- Choose wisely "Know thy mouse!"
- Use proper nomenclature and controls
- Minimize genetic drift
- Educate and establish a QC culture

Good science results in reduced animal use

Upcoming JAX™ Webinars

Subscribe to the monthly webinar announcements email list: https://subscribe.jax.org/

- Efficacy and Safety of Immunomodulatory Therapeutics Induced Cytokine Release Syndrome
 Feb 11, 2021, 1:00 PM USA Eastern Time (New York)
- Neuromuscular Platforms for Drug Discovery
 - Feb 18, 2021, 1:00 PM USA Eastern Time (New York)

MiceTech Talks: 15 minute chat sessions with JAX Technical Information Scientists on mousebased research topics. Join us on <u>YouTube</u> or <u>LinkedIn</u>. <u>Watch past episodes</u>.

THANK YOU FOR THE ADVENTURE

At JAX, we enjoy the journey as much as reaching the destination, and we're so happy you joined us.

Authorized JAX[™] Mice Distributor in Singapore:

InVivos

Website: <u>www.invivos.com.sg</u>

Tel: +65 6643 8600

Email: <u>enquiries@invivos.com.sg</u>

JAX Mice Technical Support: micetech@jax.org

JAX B6 substrains at INVIVOS

C57BL/6J	C57BL/6NJ (New**)	
JAX stock#000664	JAX stock#005304	
Deletion in Nnt gene	No deletion in Nnt gene	
	Similar to B6N of Taconic	

****** Promotional discount of **10%** till 31 Mar 2021 for C57BL/6NJ mice

