Welcome Colleagues!

TODAY'S PRESENTATION:

Comparing Immunodeficient Mice for Cancer, Immunity and Transplant Research

START TIME:

10:00 AM SGT February 26 (Singapore)

Janine Low-Marchelli, Ph.D.

Manager, Technical Information Services
Senior Technical Information Scientist

JAX MISSION

To discover precise genomic solutions for disease and empower the global biomedical community in the shared quest to improve human health.

EMPOWERING SCIENTIFIC EXCELLENCE

Our scientific expertise is derived directly from JAX faculty and scientific researchers, who are embarking on ground-breaking research in addition to providing cutting-edge models and powerful preclinical services to researchers worldwide.

Explore the Latest Innovations

Discovery

Innovation

Research

Education

JAX MICE AND SERVICES

Precise models, powerful services, and scientific expertise

MODEL ACCESS

PRECLINICAL SOLUTIONS

Mice Models

-0

PDX Tumors & Tissue Bank

Immunodeficient Models

Aged Models

Preconditioned Humanized Models Models

Model Cahart Generation Generation

Genotyping

XX

XX Phenotyping Surgical

Services

Expression Analysis

Necropsy Studies

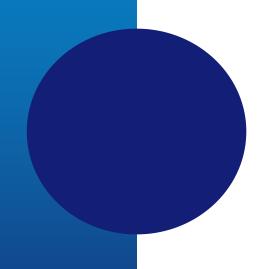
Preconditioning

Safety & Toxicity Studies

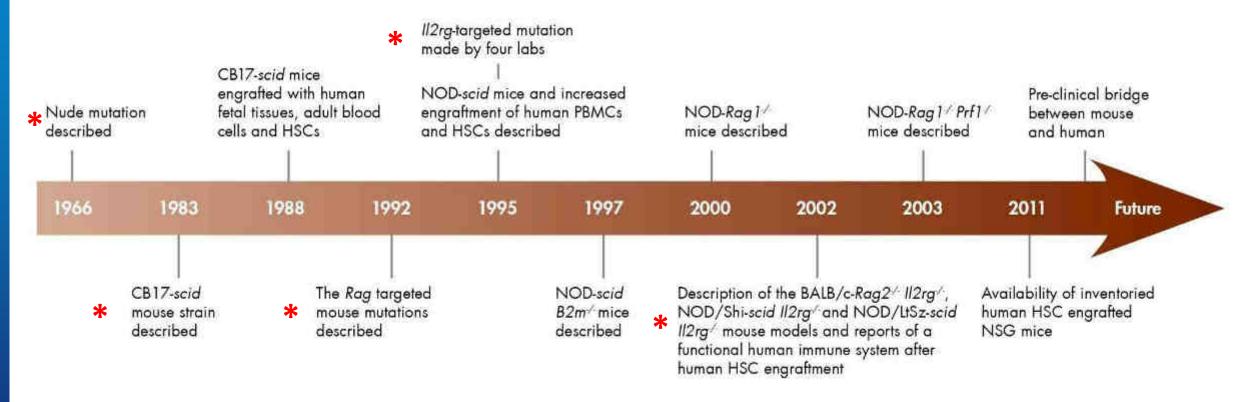
Natural History Studies

In Viva

Pharmacology


Neurobehavioral Studies

Breeding and Importation


Learning Goals

- Match genetic modification, strain characteristic to immunological phenotype
 - Nude, scid (and Rag1/Rag2), Il2rg
 - Effect of genetic background on immunodeficiency
- Identify appropriate immunodeficient strain to use based on research application
- Implement appropriate housing conditions for your immunodeficient strains

Timeline | Immunodeficient and humanized mouse development

B2m, β₂-microglobulin; H5C, haematopoietic stem cell; Il2rg, interleukin-2 receptor γ-chain; NOD, non-obese diabetic; PBMC, peripheral-blood mononuclear cell; Prf1, perforin 1; Rag, recombination-activating gene; scid, severe combined immunodeficiency.

Shultz LD et al. 2007. *Nat Rev Immunol* 7(2):118-30. PMID:<u>17259968</u>

COMPREHENSIVE IMMUNODEFICIENT SUITE

NOD scid gamma (NS6")

NOD Rag gamma (NRG)

NOD scid gamma It3, 6M-CSF, SCF [NSG-SGM3]

NOD scid

Absent

Absent.

Defective

Defective

Befective

Absent

Very low

High (thymic lymphoma)

BALB scid

B6 Rag1

Outbred and Inbred Nude

Name & Stock Number	r
Mature B cell	5
Mature T cell	S
Dandritic Cell	ń
Macrophage	5
Natural killer cell	¥
Complemen	t
Leakines	5
Irradiation tolerano	è

19999997	
Absent	
Abment	

NOD.Co-Print: 112rg

Absent	
Absent	
Defective	
Defective	
Absent	
Absent	
Very low	
Law	
Low	

NOD Cg-Prade / IDrg	willow.	
Tg(CMV-IL3,CSF2,RITI.G)		
HttpySz.J 1013053)		

NOD.CB17-Prkdc 73
NULLUIT-PARE (2
[0013003]

	Ę	朝	γ4

CRy5mn	CB17-Printe	11
	0018633	

Abount.

Absent

Present

Present

Present

Present

Very low

High (thymic lymphoma)

86.	129	57	Ra	g T	Hing	I,E
			221			

Absent

Absect.

Present

Present

Present

Present

Absent High

Low

J-NU (007850) NUL J (002019)

Present

Absent

Present

Present

Present

Present N/A

High

Low

Mature B cells
Mature T cells
Dundritic Cells
Macrophages
Natural killer cells
Complement
Leakiness
Irradiation tolerance
Lymphoma incidence

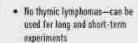
Denefits

Considerations

Reterences

		Warner Committee Control of the Cont
Absent	Absent	Absent
Absent	Absent	Absent
Defective	Defective	Defective
Defective	Defective	Defective
Absent	Absent	Absort
Absent	Absent	Absent
Very low	Absent	Absent
Low	High	Low

- . Engrafts the widest range of solid and hematological cancers,
- including ALL and AML Most sensitive host for cancer stem cells when compared to NOD scid or node mice
- Longer Ulespan than NOD scid; supports long-term engraftment studies and capabilities; >89 weeks median survival
- · Long-term multilineage bematopoietic stem cell. resonulation similar to N56™ mice

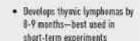

Low

- · Engrafts human PBMC without irradiation similar to NS678
- . Engrafts a wide range of salid and hematological cancers
- Increased CB4+ FoxP3+ regulatory 7 cell population

Low

- Enhanced human myelopoiesis and terminal differentiation,
- Increased efficiency of engrafting human acute myeloid teukemia IAMU
- · Higher take-rates for slowgrowing cancer cell lines than BALB sold or nude xenograft.
- Xenotransplantation of some solid human tumors
- · Adaptive transfer from strains on NOD background anables study of cell function & track cell movement.
- · About 36 weeks median surviyal

- · Allows allogenest and xenegeneic cancer cell lines & tissues
- · Engrafts hematopoietic cancer cell lines, some primary cells
- . Improvements in engraftment efficiency over nude models for some cancer cell lines
- · Radiation resistant, providing an alternative to soid mutants
- · Adoptive transfer from strains on 36 background permits to study cell function and track cell movement
- . Engraftment of human & mouse tumor cell lines
- · Easy assessment of seboutaneous tumor growth due to lack of fur


- · Sensitive to irradiation
- . No thymic lymphomas-can be used for long-term experiments · Requires higher dose of irradiation
- to obtain human HSC engraftment

Pearson et al. 2008

IPMID: 247989951

- · Compromised human stem cell regeneration
- Suppression of human erythropaiesis
- · Reduction of human B-lymphopolexis

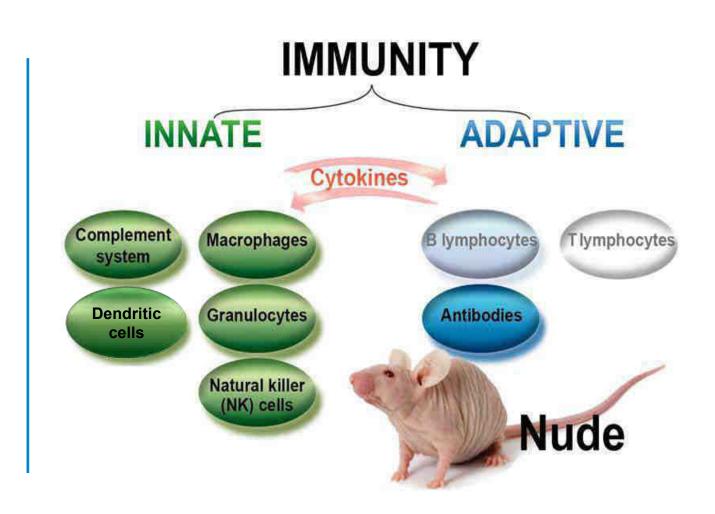
Nicotini et al. 2894 [PMID: 14628073] Wunderlich et al. 2018 [PMID: 20688503] Billiorbeck et al. 2015 (PMID: 21252091)

- · Sensitive to irradiation
- . Innate immunity intact
- · NK cell activity limits engraftment
- · Sensitive to oradiation
- · Innate immunity intact
- · Poor host for primary cell transplantation
- · Innate immunity intact
- · Little engraftment of hematopoietic cancer cells
- · Not suitable for primary cell transplantation

[PMID: 18785974] Brehm et al. 2010 (PMID: 20096637) Maykel et al. 2014

Shultz et al. 1995 (PMID: 7995938) Nonoyama et al. 1993 (PMID: 8473734)

Considerations to Select an Immunodeficient Strain


- What is your experimental goal?
 - O How much immunocompetency is required?
 - O How much immunodeficiency is required?
 - What kind of cells are being engrafted (what species, immortalized cell line/PDX, hematopoietic)?

IMMUNITY INNATE ADAPTIVE Cytokines Complement Macrophages **B** lymphocytes T lymphocytes system Granulocytes **Antibodies** Dendritic cells Natural killer (NK) cells

Nude Mice

- Nomenclature
 - Inbred Nude NU/J (<u>002019</u>)
 - Outbred Nude J:NU (<u>007850</u>)
- Immunological Deficiencies
 - Mutation: Foxn1^{nu}
 - Athymic and T cell Deficient

Nude Mice

Applications and Benefits

- Engraftment of human & mouse tumor cell lines
- Well published/characterized
- Hairless phenotype facilitates tumor growth measurements

Considerations

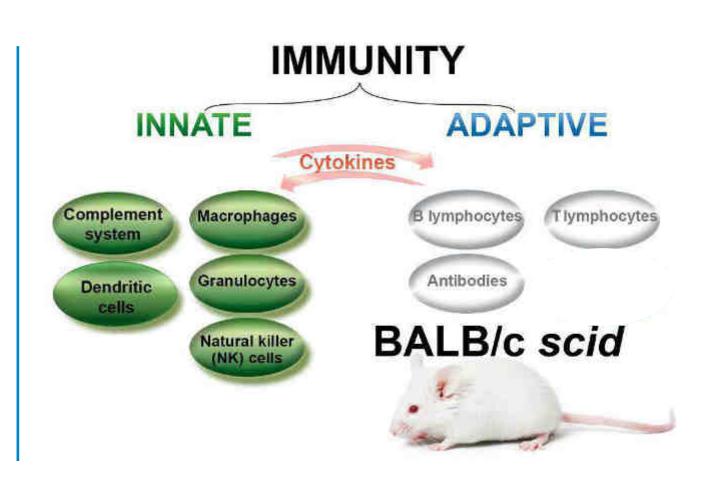
- Innate immunity intact
- May not be suitable for primary cell transplantation or hematological malignancies

Flanagan SP. 1966. *Genet Res* 8(3):295-309. PMID:<u>5980117</u>
Pantelouris EM. 1973. *Differentiation* 1(6):437-50. PMID:4547146

Easy Evaluation of Therapeutic Response in Nude Mice

Vehicle

Merodantoin


MCF-7 breast cancer cell line

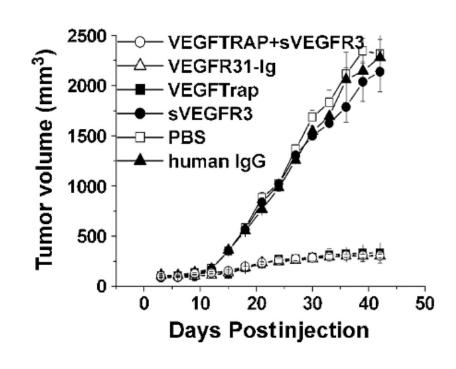
Gulliya 1994 Cancer PMID:8082074

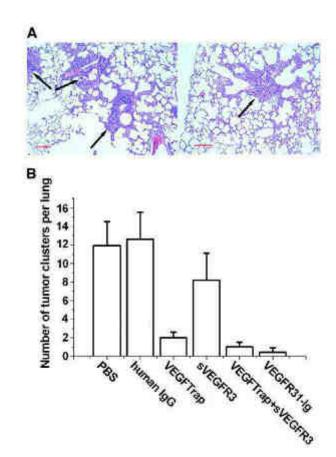
BALB/c scid Mice

- Nomenclature
 - CBySmn.CB17-*Prkdc*^{scid}/J
 (001803)
 - Similar to original C.B-17 scid
- Immunological Deficiencies
 - Mutation: scid "severe combined immune deficiency"
 - Impairs V(D)J recombination
 - No mature B and T cells

BALB/c scid Mice

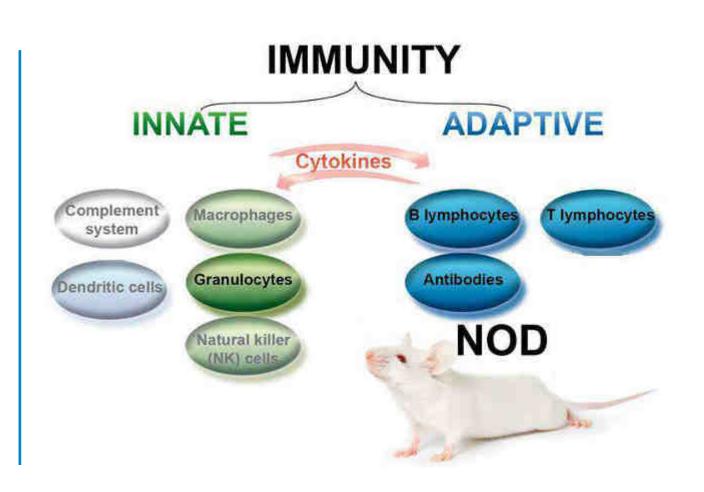
Applications and Benefits


- Xenograft host for cancer cell lines
- Efficacy testing of therapeutic antibodies
- Adoptive transfer from BALB/c donors
- Common inbred background simplifies creation of compound immunodeficient mutants


Considerations

- Innate immunity intact
- scid side effects: radiation sensitivity; genotoxic drugs may have higher toxicity
- High scid leakiness; mice may develop T and B cells as they age

Therapeutic Ab Efficacy in Tumor Growth and Metastasis using BALB/c-scid Mice



Zhang D et al. 2010. Cancer Res 70:2495-2503. PMID:20197464

NOD scid Mice

- Nomenclature
 - NOD.CB17-Prkdc^{scid}/J (001303)
- Immunological Deficiencies
 - NOD genetic background
 - Absence of hemolytic complement
 - Reduced dendritic and NK cell function
 - Less responsive macrophages
 - Optimal human hematopoietic stem cell engraftment (Sirpa allele)

NOD scid Mice

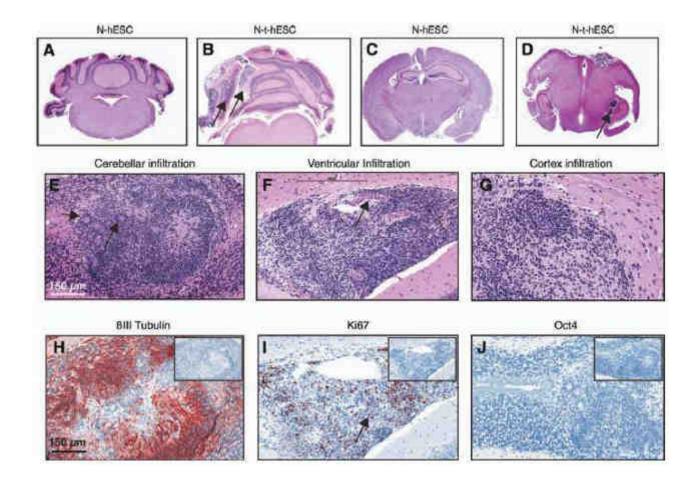
- Nomenclature
 - NOD.CB17-Prkdc^{scid}/J (001303)
- Immunological Deficiencies
 - Mutation: scid "severe combined immune deficiency"
 - Impairs V(D)J recombination
 - No mature B and T cells

NOD scid Mice

Applications and Benefits

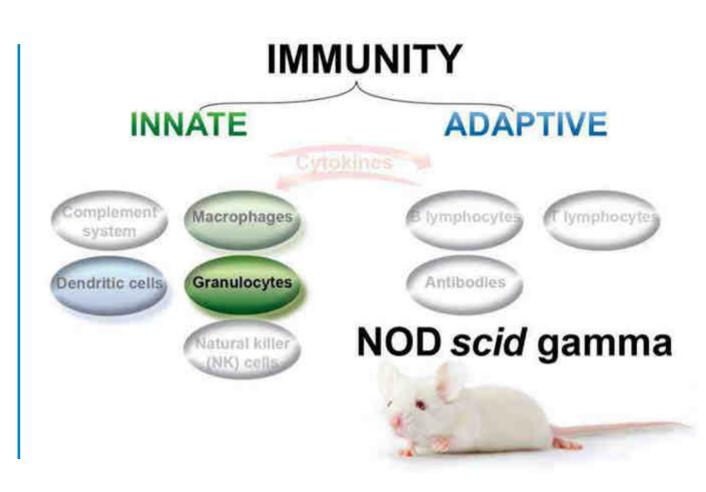
- Xenotransplantation of human tumors
- Engrafts some hematopoietic cancer cell lines
- Adoptive transfer recipient for study of autoimmune type 1 diabetes
- Significantly less scid leakiness compared to other backgrounds

Considerations


- Short life span (thymic lymphoma by ~9 months)
- Residual innate immunity (NK cell function)
- scid side effects: radiation sensitivity; genotoxic drugs may have
- higher toxicity

Shultz LD et al. 1995. *J Immunol* 154(1):180-91. PMID:<u>7995938</u>
Banuelos SJ et al. 2004. *Clin Immunol* 112(3):273-83. PMID:<u>15308121</u>

NOD scid Mice Propagate Medulloblastoma-like Tumors



Werbowetski-Ogilvie TE et al. 2012. Stem Cells 30(3):392-404 PMID:22213600

NSG™, **NOD** *scid gamma* **Mice**

- Nomenclature
 - NOD.CB17-Prkdc^{scid} II2rg^{tm1Wjl}/SzJ (005557)
- Immunological Deficiencies
 - Same as NOD scid mice
 - Additional Mutation: II2rg^{tm1Wjl} deficiency eliminates signaling from 6 interleukins and blocks NK cell development

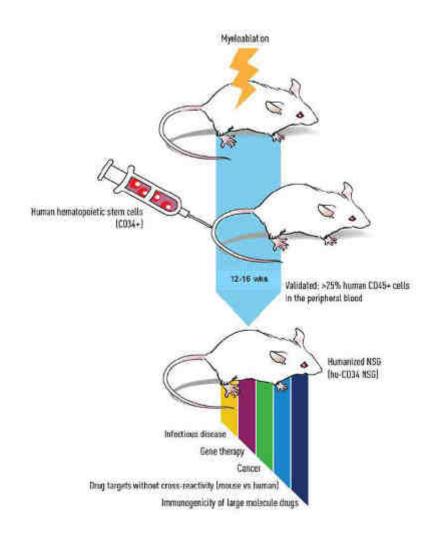
NSG™, **NOD** *scid gamma* **Mice**

Applications and Benefits

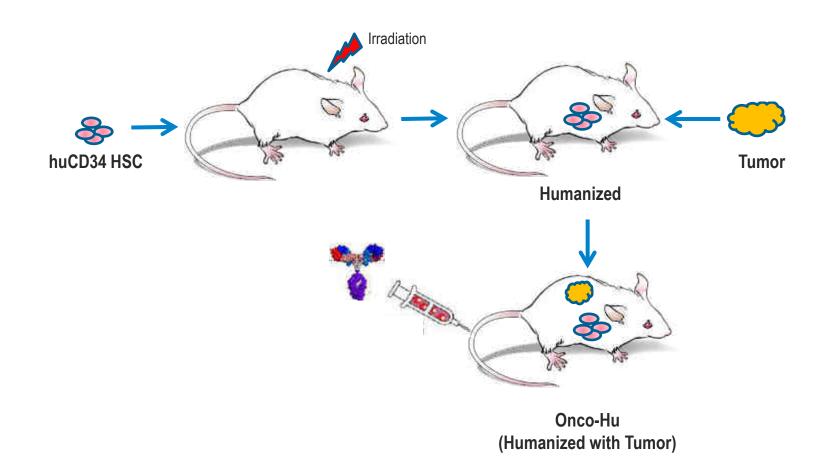
- Xenotransplantation of human tumors
- Optimal human hematopoietic stem cell engraftment (Sirpa allele)
- No scid-associated leakiness
- Longer life span than NOD-scid (> 16 months)

Considerations

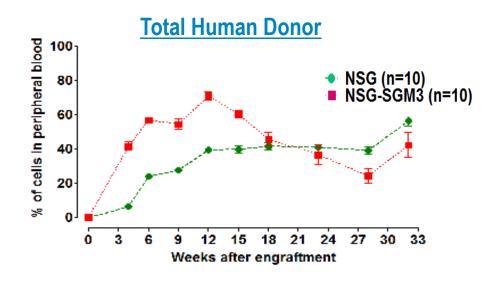
 scid side effects: radiation sensitivity; genotoxic drugs may have higher toxicity

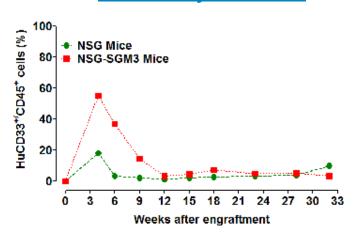


Shultz LD et al. 1995. *J Immunol* 154(1):180-91. PMID:<u>7995938</u> Banuelos SJ et al. 2004. *Clin Immunol* 112(3):273-83. PMID:<u>15308121</u>

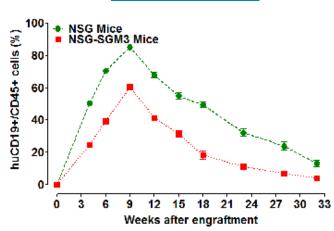

NSG™ Research Applications

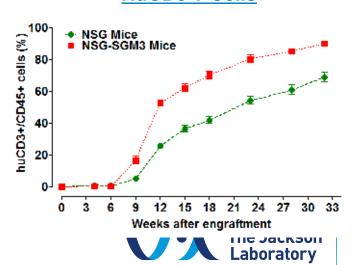
- Primary tumor engraftment
- Hematological cancers
- Human hematopoiesis
- Infectious disease
- Cell replacement therapy for type 1 diabetes
- Immuno-oncology

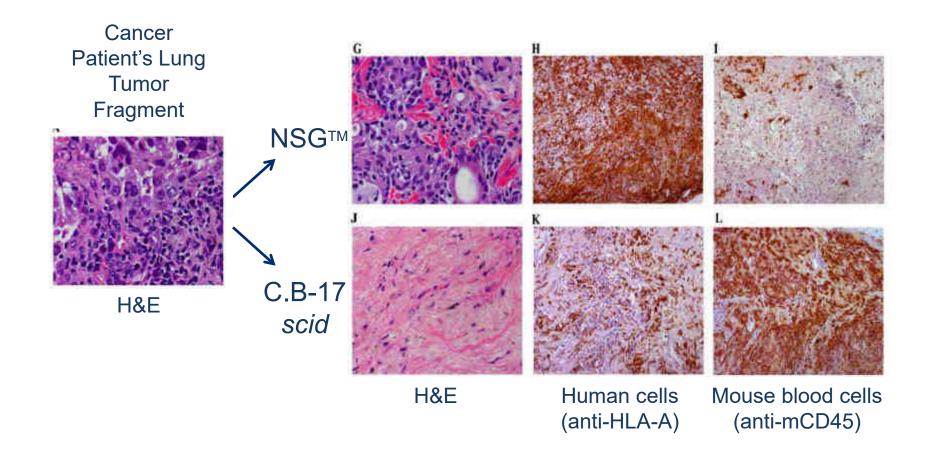

Immuno-oncology applications in NSG™Mice



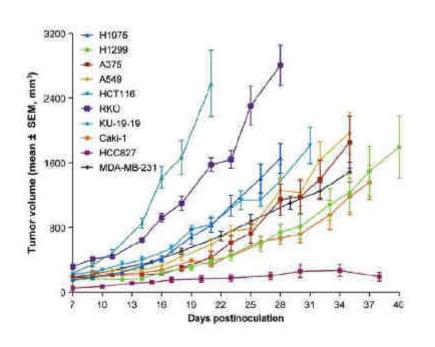
Human Immune Cells in Peripheral Blood of Hu-NSG™ vs Hu-NSG-SGM3™: Percent of HuCD45

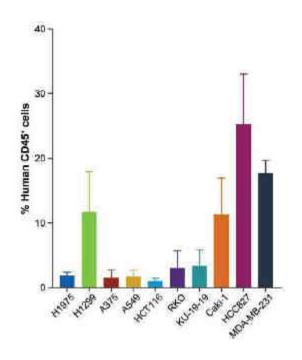

- Greater early expansion of huCD45 in NSG-SGM3
- Greater early expansion of myeloid cells in NSG-SGM3
 - Higher CD33+ cell counts (cells/μl)
- Greater percent B cells, but higher percent T cells in NSG-SGM3


HuCD33 Myeloid Cells


HuCD19 B Cells

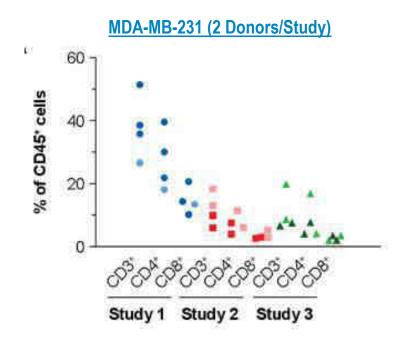
HuCD3 T Cells


NSG™ Mice Preserve Patient Tumor Characteristics

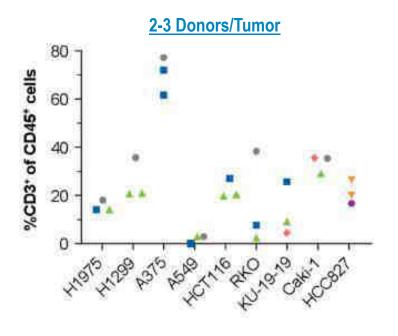


Simpson-Abelson MR et al. 2008. *J Immunol* 180(10):7009-18. PMID: 18453623

Hu-CD34 NSG™ Support The Growth of a Wide Range of Human Tumors

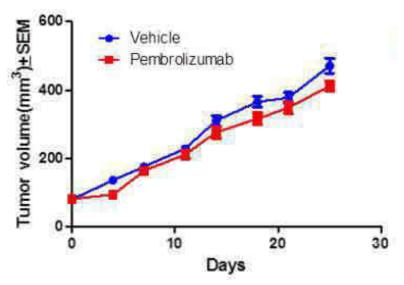


- Tumor growth & huCD45 infiltration not correlated with degree of HLA match between CB donor and tumor (2-4 donors per tumor)
- Similar to clinical observations, some tumors are intrinsically "cold" (low infiltration) and others are "hot" (high infiltration)

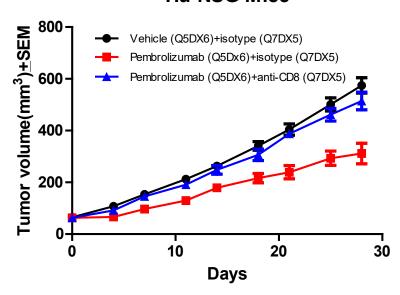

 Rios-Doria et al., 2020 J Immunother Cancer PMID: 32217760

T Cell Infiltration Frequency is Driven by Tumor, Not Donor

The donor is represented by color and shape

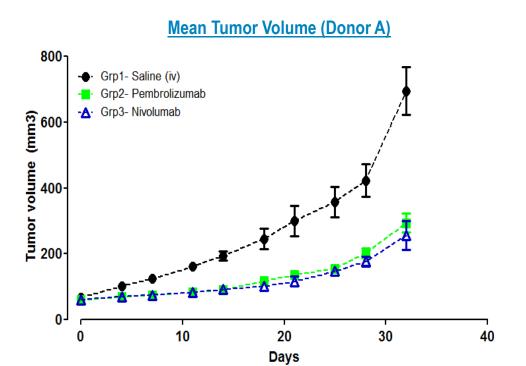

- Overall quantity of infiltration can vary between studies, but the frequency of TIL distribution is similar between different donors
- Each tumor type had similar TIL infiltration across different donors

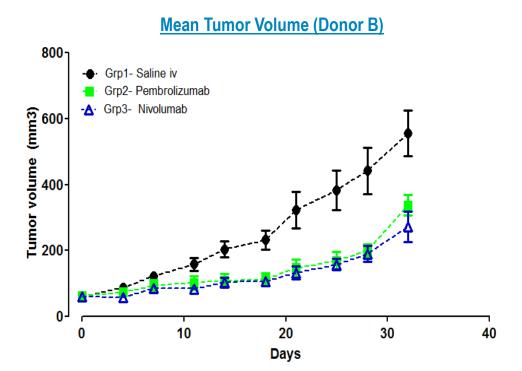
Rios-Doria et al., 2020 J Immunother Cancer PMID: 32217760



Pembrolizumab Efficacy is CD8+ T Cell Dependent in the Onco-Hu™ Model

MDA-MB-231 Tumor Response in Hu-NSG Mice




- Hu-NSG mice engrafted with MDA-MB-231 TNBC CDX
- Depletion of human CD8+ T cells abrogates anti-PD-1 mAb response

Wang et al., 2017 FASEB PMID: 29146734

Effects of PD-1 Inhibitors on TNBC (MDA-MB-231) CDX Growth in Hu-NSGTM

- PD-L1 level: 95.1%
- Two donors and two anti-PD-1 inhibitors
- The effect of Pembro and Nivo was similar and the drug treatment reduced tumor growth in both donors

Considerations to Use an Immunodeficient Strain

- Where and how will you house them?
 - O What does the strain need and what can the facility provide?
 - Owner of the control of the contr

Infectious Disease Concerns in Highly Immunodeficient NSG™ mice

- High level of immunodeficiency results in extreme susceptibility to
 - Pathogens, infectious agents that typically causes disease in immunocompetent host
 - Opportunists, potentially infectious agents that rarely cause disease in immunocompetent hosts
 - Commensals, potentially infectious agents that reside in normal host tissues without causing disease
- Common threats include
 - C bovis, Citrobacter, Enterobacter, Enterococcus spp., Klebsiella spp., Proteus,
 Pneumocystis murina, Pseudomonas, S. aureus, Coagulase-negative Staphylococcus spp.

Foreman O, et al. 2011. Vet Pathol. [PMID: 20817888]

Housing and husbandry conditions may vary depending on the level of immunodeficiency

 Barrier practices adequate to maintain nude, or even scid mice may not be adequate for NSG™

- PPE, dedicated shoes
- Sanitize hands before gloving (washing)
- Disinfect surfaces (laminar flow hoods, experimental equipment, floors, walls)
- Sterilize tools (forceps, scissors, ear punches, etc.), bedding, food and cages
- More frequent change cages, use of microisolators/individually ventilated cages (IVCs) with HEPA filters
- Work under a HEPA ventilated, laminar flow hood
- Sterilized food and water
- Monitor for pathogens frequently (opportunistic pathogen testing by fecal, colony or dirty bedding sentinel testing)

https://www.jax.org/jax-mice-and-services/customer-support/technical-support/breeding-and-husbandry-support/special-care

Personal Protective Equipment

- Sterile scrubs, gloves, dedicated shoes and shoe cover
- Face shields, hair/beard bonnet and mask and goggles
- Sterile smock
- PAPR (Powered air purifying respirator)
- Air shower

When to work with your veterinarian

- Non-specific clinical problems, ruffled fur, hunched posture
- Unthriftiness, diarrhea, wasting, sickliness
- Weight loss, weakness, lethargy, reduced mobility
- Acute and/or premature death
- Breeding problems, including:
 - Embryonic death
 - Small litters
 - Small, weak, and/or sickly pups
 - Pup mortality

Summary

- Choose a strain that allows the right balance of immunocompetency to immunodeficiency needed to answer your research question
- Both the specific genetic mutations in a strain and the genetic background of the strain contribute to the immunological phenotype
- Housing needs may differ from strain to strain and from facility to facility; work with your facility managers and veterinarians to determine what gives the mice and your research the best chances for success

Upcoming JAX™ Webinars

Subscribe to the monthly webinar announcements email list: https://subscribe.jax.org/

- Introduction to In Vivo Platforms for Cancer Immunotherapy Research
 - Mar 4, 2021, 1:00 PM USA Eastern Time (New York)
- Improving Translational Relevance with Humanized NSG™ Mice
 - Mar 18, 2021, 1:00 PM USA Eastern Time (New York)

MiceTech Talks: 15 minute chat sessions with JAX Technical Information Scientists on mouse-based research topics. Join us on <u>YouTube</u> or <u>LinkedIn</u>. <u>Watch past episodes</u>.

THANK YOU FOR THE ADVENTURE

At JAX, we enjoy the journey as much as reaching the destination, and we're so happy you joined us.

Authorized JAX™ Mice Distributor in Singapore:

InVivos

Website: www.invivos.com.sg

Tel: +65 6643 8600

Email: enquiries@invivos.com.sg

JAX Mice Technical Support: micetech@jax.org

JAX™ immuno-deficient strains available from INVIVOS

Promotional discount of 10% for JAX immuno-deficient strains till 31 Mar 2021

